A calcium- and voltage-dependent chloride current in developing chick skeletal muscle.

نویسندگان

  • R I Hume
  • S A Thomas
چکیده

1. Depolarization of embryonic chick myotubes from negative potentials elicits a rapid spike followed by a long-duration after-potential. The ionic basis of the long-duration after-potential was examined by making intracellular recordings from cultured myotubes, and by making whole-cell patch-clamp recordings from myoblasts and myoballs. 2. The peak potential of the long-duration after-potential varied with the chloride gradient, suggesting that a conductance increase to chloride is involved in generating the after-potential. However, a calcium current was also implicated, since lowering the extracellular calcium or replacing extracellular calcium with cobalt abolished the after-potential. 3. When extracellular calcium was replaced with strontium or barium, short-duration spikes similar to calcium spikes were observed, but only strontium was able to support activation of long-duration after-potentials. Intracellular injection of calcium or strontium into myotubes bathed in calcium-free extracellular solutions restored the ability of depolarization to evoke an after-potential. Intracellular injection of magnesium, barium, nickel or cobalt did not restore this ability. These experiments strongly suggested that the long-duration after-potential was due to a calcium- and voltage-activated chloride current. 4. Whole-cell voltage-clamp recordings from myoballs and myoblasts showed that a large chloride conductance could be activated by depolarization when the internal free calcium concentration was buffered at levels greater than 10(-7) M. At 2.5 x 10(-7) M-calcium, the voltage dependence of activation was steepest in the range of -30 to -20 mV and the activation kinetics varied with the membrane potential. The time to half-maximal activation ranged from 0.1 s at positive potentials to greater than 1 s at more negative potentials. The time constant for deactivation was approximately 1 s at -50 mV. No inactivation was observed. 5. The selectivity of the chloride current was measured by substituting other anions for chloride. The following permeability series was found: I- greater than NO3- greater than Br- greater than Cl- greater than acetate greater than F- greater than SO4- = glucuronate. Thus anion permeability decreased as the hydration radius increased. 6. Measurements of the resting potential of developing myoblasts and myotubes under 'physiological' conditions (37 degrees C, bicarbonate buffer) suggest that the after-potential acts to depolarize these cells 10-20 mV above their resting potential (approximately -60 mV) for several seconds. 7. We discuss the possibility that the long-duration after-potential may be involved in triggering myoblast fusion and in the generation of bursts of spontaneous contractions in developing myotubes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single calcium channel behavior in native skeletal muscle

The purpose of this study was to use whole-cell and cell-attached patches of cultured skeletal muscle myotubes to study the macroscopic and unitary behavior of voltage-dependent calcium channels under similar conditions. With 110 mM BaCl2 as the charge carrier, two types of calcium channels with markedly different single-channel and macroscopic properties were found. One class was DHP-insensiti...

متن کامل

Effects of ionic parameters on behavior of a skeletal muscle fiber model

All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...

متن کامل

Evidence for voltage-dependent inactivation of slow currents through calcium channels in frog muscle membrane.

Two mechanisms of inactivation of slow inward current through calcium channels in frog skeletal muscle have been described: voltage dependent inactivation similar to that of classical sodium channels (Cota et al. 1982, 1984; Stanfield 1977); and calcium ions depletion inside the T-tubules as a result of inward current flowing through the T-membrane. In the latter case the inactivation is curren...

متن کامل

Characterization of outward potassium current in embryonic chick heart cells.

AIM To characterize a voltage-dependent outward K+ current in cultured heart cells of 14-16-day-old embryos of yellow chick. METHODS The patchclamp technique in the whole-cell configuration was used. RESULTS The kinetics and the pharmacology of the outward K+ current in our cell mold were different from those described in white chick. Like the calcium-activated K+ current, blocker of calciu...

متن کامل

Effects of Buthus eupeus Venom on Neuromuscular Transmission on Striated Muscle In Vitro

In this study, effects of Buthus eupeus venom on chick biventer cervices nerve-muscle preparation were investigated by twitch tension method. The venom, at 1.3 ?g/ml, increased contractile responses in indirect stimulations. These effects were milder in direct muscle stimulations. It also caused significant enhancement in postjunctional sensitivity as assessed by responses to exogenous acetylch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 417  شماره 

صفحات  -

تاریخ انتشار 1989